מאחורי מושג השימור עומד הרעיון שכמותו של דבר מה אינה משתנה, על אף שינויים בצורתו ובמראהו. דוגמא לכך היא ההבנה שכאשר שופכים מים מכוס גבוהה לכלי שטוח, כמות המים אינה קטנה אלא נשמרת, למרות שגובהם יורד. מושג זהה נקרא שימור נפח הנוזל, וזהו אחד ממושגי השימור הראשונים שילדים רוכשים.
במסגרת מחקריו על התפתחות קוגניטיבית חקר פיאז'ה את התפתחותו של מושג זה אצל ילדים. בניסוי מפורסם הוא הציג לילדים 2 כוסות זהות בצורתן, מלאות בכמות שווה של מים. כשנשאלו על כמות המים בכוסות ידעו הילדים לזהות שמדובר בכמות שווה, אך כשהעבירו את המים מאחת הכוסות לכוס רחבה וקצרה יותר משתי האחרות, חשבו מרבית הילדים שבכוס הגבוהה יותר יש יותר מים. כשנשאלו מדוע הסבירו שהמים בה מגיעים לגובה רב יותר.
ילדים בגיל 3 ומרבית הילדים בגיל 4 נמצאים בשלב הבנה זה, שע"פ התיאוריה של פיאז'ה נקרא שלב 1 ברכישת מושג השימור. בשלב השני, בגילאי 5-6, הילדים מהססים יותר בתשובתם. הם מסוגלים לתפוס לא רק את גובה המים, אלא גם את רוחב הכלי. הם יכולים לומר שבכוס הגבוהה יש יותר מים, ואז להתחרט ולומר שבכוס הרחבה יש יותר. בשלב השלישי, שפיאז'ה כינה "שימור בשל" ילדים מבינים שהכמות לא משתנה במעבר מכלי לכלי אחר, שונה בצורתו. שלב זה מגיע בגיל 7 בערך, וזהו אחד הסימנים הקוגניטיביים למעבר לשלב ההתפתחותי שפיאז'ה כינה 'השלב האופרציונאלי'.
ההבנה של הפיכות נרכשת עם הבנת השימור, והיא קשורה להבנה של שינוי. דבר יכול לשנות את צורתו, ואז לחזור לצורה המקורית, למשל- המים יכולים לעבור מכוס גבוהה לכוס נמוכה ולחזור לכוס הגבוהה, או בדוגמה אחרת- להפוך מנוזל לקרח ואז שוב לנוזל.
מושגי שימור נוספים, שבדרך כלל נרכשים במהלך ביה"ס היסודי (עד גיל 10):
שימור המספר: הרעיון שמספר הפריטים בקבוצה נשאר אותו מספר גם בסידור שונה.
שימור המסה: הרעיון שכמות החומר נשמרת גם כשהוא משנה את צורתו (אותו כדור פלסטלינה כאשר לשים אותו לצורות שונות לא משנה את כמותו).
שימור האורך: אורכו של דבר מה נשמר בין אם הוא ישר, מכופף או מפותל (סליל שנמתח אינו משנה את אורכו).
ביבליוגרפיה
מ. בודן (1999), פיאז'ה, הוצאת דביר.
א.סרוף, ר.קופר, ג.דהארט (1998) התפתחות הילד טבעה ומהלכה, האוניברסיטה הפתוחה.
אפטר, א.הטב, י.ויצמן, א.טיאנו, ש. (1998), פסיכיאטריה של הילד והמתבגר. הוצאת דיונון- אוניברסיטת תל-אביב.